Performance of a WiFi Network as a function of Distance and Number of Connections in a School Environment

ENSC 427 Communication Networks

Spring 2017

Group 1

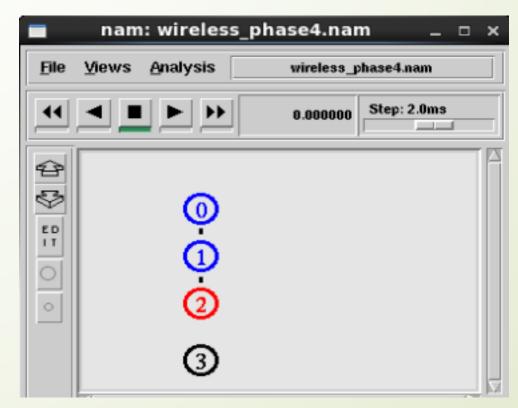
http://www.sfu.ca/~rsa83/

Daniel Quon 301170142 <u>dquon@sfu.ca</u> Rajdeep Bhullar 301187037 <u>rsa83@sfu.ca</u> Kamal Ezz 301213002 kezz@sfu.ca

Overview

- Introduction
- Technology
- Scenarios Simulated
- Simulation and Data Analysis
- Conclusion
- Difficulties and Future Work
- References

Introduction


What we intend to achieve?

- Simulate and analyze the performance of a typical University Wi-Fi environment to determine the optimal network configuration
- Analyze the following performance metrics throughout various scenarios
 - Throughput
 - Packet Loss
 - Delay

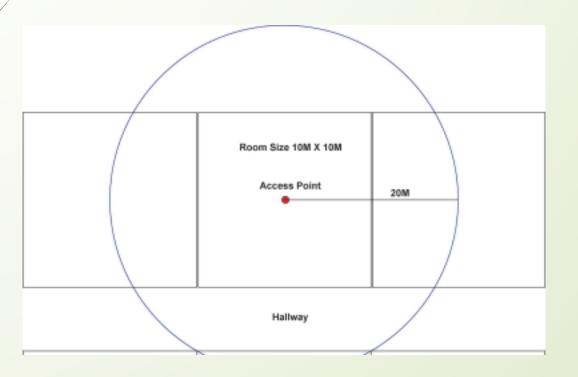
3

Introduction

- Tools:
 - Network Simulator (ns2)
 - Network Animator (nam)
 - X-Graph

Technology

802.11a/b/g/n/ac


Standard	Max Data Rate (Mbps)	Typical Throughput (Mbps)	Channel Bandwidth (MHz)	Operating Frequency Band
802.11b	11	6.5		2.4 GHz
802.11a	54	25	20	5 GHz
802.11g	54	25	20	2.4 GHz
802.11n	600	100	20, 40	2.4 GHz & 5 GHz

- Transmission Control Protocol (**TCP**)
 - Connection-oriented
 - Reliable
- User Datagram Protocol (UDP)
 - Connectionless
 - Fast

Technology

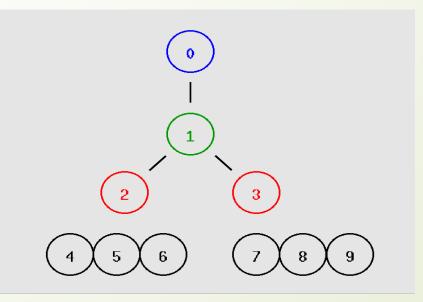
- Access Point Transmission Power
 - Omnidirectional 40 metre radius
- Classroom Size
 - 10 metre X 10 metre

Related Work

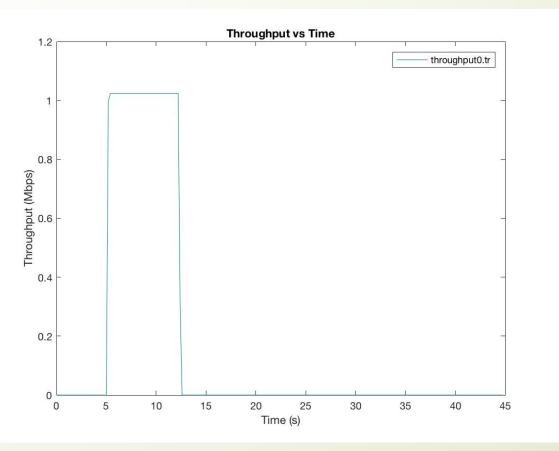
Video Streaming over WiFi

C. Chen, S. Sheng, and J. Yoo, "High Resolution Video Streaming over Wi-Fi, WiMAX and LTE," Accessed: March 28, 2017. Available: http://www.sfu.ca/~cyc19/report.pdf

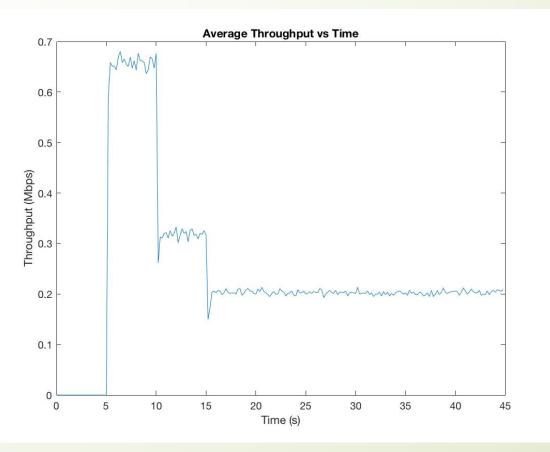
Performance Analysis of a Home WiFi Network


M. Morales, C. Rietchel, and T. Szajner, "Performance Analysis of a Wireless Home Network" Accessed: March 28, 2017. Available: <u>http://www.sfu.ca/~tszajner/</u>

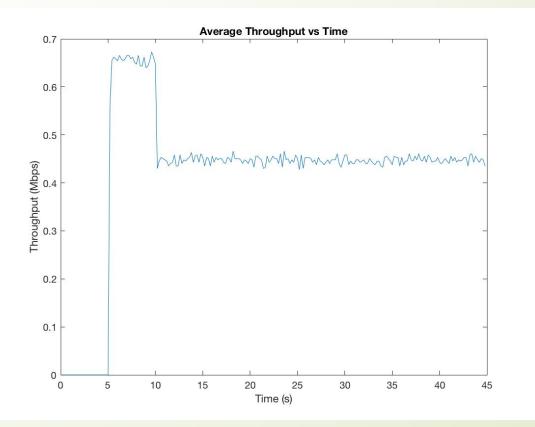
Scenarios Simulated


• 1 Access point serving 1 Node

- 1 Access point serving **n** max Nodes
- 2 Access points serving **n** Nodes


Simulation and Data Analysis - Throughput

• 1 Access point X 1 Node


Simulation and Data Analysis - Throughput

• 1 Access point X 20 Nodes

Simulation and Data Analysis - Throughput

• 2 Access points X 20 Nodes

Conclusion

- Throughput
 - The rate is expected to fall in steps as we increase the distance between our node and the access point
 - Throughput does not change during ns-2 simulation as the tool does not account for wireless medium noise
 - After the wireless node reaches outside of the transmission range, throughput drops to zero as the connection is lost
 - As the number of connections to the access point increases, the throughput of each connected node declines as throughput is shared among all connected nodes

Conclusion

- Packet Loss
 - As more nodes are connected to the access point, packet loss increases for each of the connected nodes
- Average End-to-end Delay
 - The time taken for data to travel across the network from one point to another increases as more nodes are enrolled to the access point

Difficulties and Future Work

- 802.11n/ac for ns2
- Ns2 Syntax
- Complex and Diverse Evaluation Scenarios to simulate realistic traffic
- Further metrics could be monitored
 - Noise and Interference
 - Jitter

References

- J. Kolap, S. Krishnan and N. Shaha, "Frame Aggregation Mechanism for High Throughput 802.11n WLANs," International Journal of Wireless & Mobile Networks (IJWMN), vol. 4, no. 3, pp. 141-153, 2012.
- K. Fall and K. Varadhan, "The ns Manual (formerly ns Notes and Documentation)," 5 November 2011. [Online]. Available: http://www.isi.edu/nsnam/ns/tutorial/. [Accessed 19 3 2017].
- [3] J. Florwick, J. Whiteaker, A. Amrod and J. Woodhams, "Wireless LAN Design Guide for High Density Client Environments in Higher Education," 10 July 2015. [Online]. Available: http://www.cisco.com/c/en/us/products/collateral/wireless/airo net-1250-series/design_guide_c07-693245.html#wp9001157. [Accessed 19 March 2017].
- [4] M. Gast, 802.11n: A Survival Guide, Sebastopol: O'Reilly, 2012.
- [5] P. Gaonkar, D. Tandur and G. Rafig, "Range Performance Evaluation of IEEE 802.11n Devices," in Industrial Technology (ICIT), 2015 IEEE International Conference, Sevilla, Spain, 2015.

15

Questions?